In-Season Applications of Temik 15G for

Tarnished Plant Bug Management

Dr. Kelly Tindall

Professor, Entomology
Farm Worker 1, Entomology
Karen Ivie
Lab Assistan
ethods: Nine trials were conducted across impact of in-season application of Temik on tarnished plant bug (TPB) infestations and yield. Selected sites were fields with a corn-cot-
ton interface with cotton rows running parallel to the corn. Corn and cotton fields were not separated by more than 40 feet of uncultivated land (turn-row, ditch, etc.). The trials included 2 trol) that were applied in addition to all normal production practices. Temik was applied to the first 32 rows from the edge of the field next to corn at 10 lb form./acre as a side-band when plants in the adjacent corn field were at the match-head square stage. Plots were at least 100 ft . long, with a minimum of three replications. All of the plots within a trial were ordered along the corn-cotton interface using a randomof the Temik applications, the fields were managed according to the growers' standard production practices, including insecticide applications over the entire field. Sampling for tarnished plant bugs and square retention measurements
was initiated at the time of Temik application and collected weekly for $4-6$ weeks. Four areas were sampled within each 32 row plot at regular distances from the corn (rows 4-5, 12-13, 20-
21, and $28-29$ rows away from the corn). Sam21 , and $28-29$ rows away from the corn). Sam-
pled areas were marked so that the same areas could be re-sampled each week. In addition, at least two samples per plot were collected; one was within 4 rows of the plot ($35-36$ rows from the edge of the corn field) and the other was at plots to evaluate the width of the elevated TPB density edge. Each sample consisted of 2 sets of 25 sweeps, 2 drops of the drop cloth (10 row ft), was estimated by harvesting at-least two rows from each set of 8 rows of each plot (4 yield measurements per plot). Also, yield was estimated within the first six rows adjacent to each plot and at 150 ft from the edge of each plot. jected to ANOVA procedures using the SAS mixed procedure, with means separated accordng to Fisher's Protected LSD.
Comments: There were no significant interaction between insecticide application and dis-
tance (rows) from the adjacent corn field observed for tarnished plant bug densities using sweep net sampling observed for the pre-treatment sample or at weeks $1,3,4$, or 5 after ap-
plication. During week 2 after treatment the non-treated plots had significantly more plant
bugs at rows $20-21$ and $28-29$ compared to the
same rows in the Temik treated plots. Across all same rows in the Temik treated plots. Across all more plant bugs compared to the Temik treated plots at the pre-treatment sampling date and at
weeks 2 and 3 after treatment Across insecti weeks 2 and 3 after treatment. Across insecti-
cide treatments significant differences in tarcide treatments significant differences in tar-
nished plant bug densities were observed among distances from the adjacent corn fields at all sampling dates. Except for the pre-treatment sample, the highest plant bug densities were ob-
served at rows $4-5$ or $12-13$. The lowest dens served at rows 4-5 or 12-13. The lowest densi-
ties were generally observed at the sample points the furthest from the corn (row 80 or 150 ft beyond edge of the plots).
No significant interaction between insecticide application and distance (rows) from the adja-
cent corn field observed for tarnished plant bug densities using drop cloth sampling at any sample date. Across all rows, the non-treated plots had significantly more plant bugs compared to the Temik treated plots at weeks 2, 3, and 5 after
treatment. Across insecticide treatments significant differences in tarnished plant bug densities were observed among distances from the adjacent corn fields at week 4 after treatment. Significantly lower plant bug densities were observed at sample points the furthest from the
corn (row 80 or 150 ft beyond edge of the plots) compared to rows, 4-5, 12-13, 20-21, or 28-29. No significant interaction between insecticide
application and distance (rows) from the adjaapplication and distance (rows) from the adjacent corn field was observed for square retention
observed for the pre- treatment sample or at weeks $1,2,4$, or 5 after application. A significant interaction was observed at week 3 , but the lowest square retention observed was > 89\%. Across all rows, significant differences were obweeks 1,2 , and 3 after treatment, however the lowest square retention observed on any sample date was 91.6%. Across insecticide treatments
significant differences in square retention were significant differences in square retention were
observed among distances from the adjacent corn fields for the pre- treatment sample and at weeks 1,2 , and 3 after application, however the lowest square retention observed at any sample date was 90.6%
application and distaction between insecticide cent corn field was observed for lint yield (Figure 1). Across all rows, the Temik treated plots produced significantly more lint yield compared to
the non-treated plots. Across insecticide treatments sample points the furthest from the corn (row 80 or 150 ft beyond edge of the plots) produced significantly more yield compared to rows, 4-5, 12-13, 20-21, 28-29, or 6 rows beyond the edge of the plots.
$D R$. KELLY TINDA
or, Entomology, University of Assistant ProfesGENE WINDHAM: Farm Worker 1, Entomology, University of Missouri University of Missouri

Figure 1. Influence of insecticide application and distance (number of rows) from adjacent corn field on lint yield. 6 Rows 0 utside $=6$
rows beyond the edge of the 32 row plot and adjacent to either a Temik or non-treated plot. 150 ft 0 Uutside $=150$ t beyond the edge of rows be 1. 2 . 1 the 32 row plot and adjacent to either a Temik or non-treated plot.

